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Complementary Discussion for Challenge
Classification to main paper ”The Road to Safe

Automated Driving Systems: A Review of Methods
Providing Safety Evidence”

Magnus Gyllenhammar, Gabriel Rodrigues de Campos, and Martin Törngren, Senior Member, IEEE

Abstract—This is a complementary document to the main
paper ”The Road to Safe Automated Driving Systems: A Review
of Methods Providing Safety Evidence”. In this document some
additional details pertaining to each methods’ ability to address
the eight challenges are provided. The ensuing sections include
explicit motivation for the challenge classifications not explicitly
given in the main paper. Thus, jointly with the main paper
the information herein provides the basis for the classification
presented in TABLE VI of the main paper.

I. CHALLENGES

This is a recap of the challenges identified in the main paper:
Uncertainties:

C-U-env Uncertainties associated with the opera-
tional environment of the ADS,

C-U-inter Uncertainties originating from the interac-
tion of the ADS with other traffic partici-
pants,

Behavioural and structural complexity:

C-B-resp ADS’s responsibility for all strategic, tacti-
cal and operational decisions of the driving
task,

C-B-func Complex set of interwoven functions and
sub-systems required to realise an ADS,

C-B-adapt Self-adaptation capabilities of the ADS, in
particular, to cope with (temporary) degrada-
tions of the system,

Dependability requirements:

C-reqs High dependability requirements imposed
on the system, e.g. originating from a com-
parison with human performance, highlight-
ing the contribution of corner and edge cases
to the overall safety,

AI and ML components
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C-AI Validation of (black box) components re-
lying on Artificial Intelligence (AI) and Ma-
chine Learning (ML),

Agile development and continuous deployment
C-agile Frequent releases and continuous learn-

ing, with to a shift to an iterative
and agile development process including
software upgrades, requiring reduction of
safety/assurance case compilation efforts (or
re-verification and re-validation of the sys-
tem).

II. COMPLEMENTARY DISCUSSION

The following subsections collect the remaining discussion,
complementing that given in the main paper, such that all the
cells of the challenge classification of TABLE I of the main
paper are explicitly motivated.

A. Operational Design Domain (ODD)
The use of an ODD could help alleviate some difficulties to

challenges (C-B-resp), (C-B-func) and (C-reqs) by providing
clear boundaries for where the function will be operational.
Similarly, also relying on ML-based AI components (related to
challenge (C-AI)) might be ameliorated by concretely defining
what is inside the operational domain, which could privide a
formalised means for out-of-distribution detection.

B. Hazard Analysis and Risk Assessment (HARA)
As the current HARA process relies on mainly manual

work, it would be challenging to match with high cadence
releases within an agile development process and the impact
from incorporation of new evidence through continuous learn-
ing is also unclear (i.e. challenge (C-agile)). However, the
process itself does not need to be manual, but a solution to
overcome that is yet to be defined. As for challenge (C-reqs),
regarding the high dependability requirements, it is currently
difficult to assess how the HARA will be able to ameliorate
this aspect considering the diversity of relevant events to
consider. After the first successful deployment of an ADS,
and once sufficient operational data becomes available, this
might, however, no longer present itself as a challenge, as
the completeness of scenarios and events underpinning the
HARA could then be deduced from the collected data itself,
e.g. following the approach of [1].
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C. (Qualitative) Process Arguments

Similar to the HARA, process arguments struggle with
encapsulating the uncertainties imposed on the ADS through
challenges (C-U-env) and (C-U-inter). Further, challenges
(C-B-resp), (C-B-func), (C-B-adapt), and (C-reqs) could, in
principle, be supported by process arguments, though the
quantitative contributions would then need to be better under-
stood. Further, how to merge process arguments and traditional
development processes with agile development (to address
challenge (C-agile)) remains an open challenge [2].

D. Contract-Based Design (CBD)

As CBD provides a clear interface between system el-
ements, it effectively supports modularity of the elements
and consequently ameliorates challenge (C-agile), pertaining
to frequent releases and continuous learning. However, the
complexity of the ADS (formulated in challenge (C-B-func))
raises the question of the scalability of the approach for highly
interwoven functionalities and complex systems. Further, the
defined contracts require formalised specification of the as-
sumes and guarantees, which, considering challenges (C-U-
env) and (C-U-inter), might be difficult to achieve on the
boundary of the ADS towards its environment. When using
machine learning-based black-box components (e.g., challenge
(C-AI)), the difficulty of applying contracts is even greater, as
small perturbations to the inputs might lead to large perturba-
tions in the output [3], which requires highly dependable sys-
tems for monitoring and out-of-distribution detection. Finally,
encoding formalised contracts for the tactical decisions of the
ADS (related to challenge (C-B-resp)), such that they fulfil the
safety requirements, represents a considerable challenge.

E. Supervisor Architectures

While the vast number of possible degradations (related to
challenge (C-B-adapt)) pose a challenge for the implemen-
tation of an appropriate supervisor architecture, supervision
is the only solution allowing for an appropriate adaptation
to manage the different degradations of the system. Further,
supervisor architectures help tackling the first two categories of
challenges, namely the uncertainties and the behavioural and
structural complexities. Moreover, by deploying anomaly and
OoD detection, ML-based components (related to challenge
(C-AI)) can be supervised. Lastly, appropriate supervision ca-
pabilities might ease the requirements on the assurance efforts
done before deployment of the system, and thus ameliorate
challenge (C-agile) by reducing time-to-market for each ADS
version.

F. Field Operational Tests (FOTs)

The feasibility of FOTs as a V&V method is questionable
considering the higher cadence releases resulting from an agile
development process, or the sought continuous learning cycle
of the system, pertaining to challenge (C-agile).

G. Extreme Value Theory (EVT)

As the results from an EVT analysis are only as good
and representative as the data used, EVT faces the same
challenges as FOTs with respect to ensuring safety while
testing the system in closed-loop (i.e. to assess challenges (C-
U-inter) and (C-B-resp)). It is also paramount that the collected
data (e.g. through the FOTs) is representative of the actual
operating conditions of the ADS. In terms of challenge (C-
agile), pertaining to agile development and accommodating
continuous learning, the EVT approach helps ameliorating
parts of these challenges by leveraging collected data to infer
the systems performance level beyond the operational hours
used to collect it. However, the reliance on data is detriment to
the method’s ability to support frequent releases and depending
on the collection method this might impose an insurmountable
challenge.

H. Scenario-Based Verification and Validation Methods

GA

C

Fig. 1. Illustration of the ”scenario space”. A corresponding to all possible
scenarios in the intended operational design domain of the ADS, G the
identified scenarios, and C the safety critical scenarios for the system.

Placing all tactical responsibility on the ADS (i.e. challenge
(C-B-resp)) makes the use of scenario-based testing difficult
since the ADS might take actions to avoid the initial state of
the scenario altogether, rendering the testing results irrelevant
(again, corresponding to G∩ Ā of Fig. 1). The complexity of
the system and its ability to handle degradations (challenges
(C-B-func) and (C-B-adapt) respectively) could, on the other
hand, be efficiently validated through scenario-based methods,
as they scale according to the testing environments used.
Further, the use of simulations helps executing testing and
verification quicker and safer than real-time, thus supporting
high release cadences (challenge (C-agile)). Additionally, this
aspect enables efficient testing of large changes to the system.
This said, validation of the models and tools used for simu-
lation itself still impose significant challenges. In particular,
model validation includes choices of adequate abstraction
levels and level of detail of the various subsystems and the
environment for simulation purposes. Further, these choices
need to be verified and validated such that the simulation
results provides appropriate evidence for the V&V purposes.
Moreover, multiple models and simulation compositions will
be needed for different purposes.

I. Formal Methods

On the other hand, the successful application of formal
verification methods would provide an efficient means to
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ensure the safety of the ADS and thus support high release ca-
dence as well as continuous learning (i.e. challenge (C-agile)).
Formal methods might also help analysing and understanding
challenge (C-B-adapt), i.e. the capabilities of degraded modes
of the system, and how the system can safely adapt to cope
with such changes. Within a well defined setting, and for a
limited component, subsystem or specification, it should be
noted that formal methods are both suitable as well as useful.
However, as noted in [4], any evidence supplied from formal
methods should ideally be accompanied by the applicability
of that evidence, as well as the formal method/tool used,
whenever incorporated into the assurance case.

J. Operational Data Collection

The main purpose of monitoring leading (safety) indicators
is to contain the residual risk related to challenges (C-U-
env), (C-U-inter), (C-B-resp), (C-B-func), and (C-B-adapt).
This type of indicator monitoring could be further enhanced
by the use of EVT modelling of the SPIs/KPIs, as suggested
in [5], helping to compare sparse data to the high dependability
requirements of the system (challenge (C-reqs)).

K. Threat Assessment (TA) Techniques

The intention of the threat metrics is to assess the current
threat or risk faced by the system during its operations.
However, accurate modelling and assessment incorporating
the uncertainties of challenges (C-U-env) and (C-U-inter) into
the metrics remain difficult. The metrics themselves provide
support for the operational decisions of the ADS (related to
challenge (C-B-resp)) and also give a quantitative assessment
of the risks irrespective of the complexity of the system, i.e.
bypassing challenge (C-B-func).

The focus of most TA metrics is to assess the risk imposed
on the vehicle from its external environment. However, integral
to these assessments are the capabilities of the ego vehicle.
For example, the Brake-Threat-Number (BTN) or Time-To-
Collision (TTC) [6] both incorporate the vehicle’s braking
capability, or at least an estimate thereof. Consequently, the
TA could partially support the understanding of the necessary
adaptation needed to cope with system degradations related
to challenge (C-B-adapt). If coupled with EVT modelling,
TA could provide a way to ameliorate the high dependability
requirements of challenge (C-reqs), but accurately considering
the probabilities of rare events might simultaneously reduce
the accuracy of the TA and thus suggesting that these same
requirements might pose an obstacle to TA. If the calculation
of the metric is reliant on AI/ML-based component, the TA
will also be difficult to validate, corresponding to challenge (C-
AI). However, if that is not the case, the use of metrics might
provide a means to validate the AI/ML-based components
in the system based on operational data. The frequency of
releases of the ADS (challenge (C-agile)) will not constitute
an obstacle for deploying an appropriate TA. Furthermore,
such TA techniques would also not be of any particular help
when it comes to improving the release cadence of the ADS,
except as a means to reduce potential negative impact through
monitoring and triggering whenever the system gets into

hazardous situations. Continuous data gathering and analysis
of the trends of the resulting TAs could however support a
learning cycle, also related to challenge (C-agile).

L. Out-of-Distribution (OoD) Detection

OoD detection is believed to be helpful in increasing
the reliability of AI/ML-based components and consequently
address challenge (C-AI). As the components are ensured to
operate within the set of samples known to the algorithm,
one can also rely on the validation results provided (based
on samples from the same set). The environment uncertain-
ties faced by the ADS, formulated within challenge (C-U-
env), might be partly mitigated by the use of OoD detection
whereas the uncertainties originating from the interactions,
concerning challenge (C-U-inter), are unrelated to the use
of an OoD detection method. The challenges of behavioural
and structural complexity, challenges (C-B-resp), (C-B-func),
and (C-B-adapt), are also not applicable. Even though OoD
detection methods might support the validation of AI/ML-
based components, ensuring sufficient integrity of the OoD
detection itself will be challenging and, as a consequence, the
high dependability requirements, formulated within challenge
(C-reqs), will present obstacles. As OoD detection methods
will have to be trained on the same data as the AI/ML-based
components nothing does per se hinder frequent development.
In some sense, updating the OoD detection alongside the
AI/ML-based components might even be seen as supporting
a learning cycle of the system. However, since such updates
would be inherent and needed upon any updates to the training
data used for the AI/ML-based components, this activity would
also require resources upon each update. Notably, if online
(in-vehicle) learning is used for the AI/ML-based component
this would also require online resources for updating the OoD
detection.

M. Dynamic Risk Assessment (DRA)

When approaching a solution to DRA, the more factors
and parameters included, the more refined model for situation
awareness can be achievable. However, the problem is that
the more factors included, the more data is needed to develop
the models that are used to realize the situational awareness.
Thus, we face the challenge of state space explosion due to the
uncertainties of the operational space of the ADS (related to
the challenges (C-U-env) and (C-U-inter)), as discussed in the
main paper in terms of the V&V methodologies. However, the
ability for a DRA method to handle uncertainties in run-time,
formulated within the challenges (C-U-env) and (C-U-inter),
is completely dependent on the metrics and models used.

The flexibility of DRA seem to lend itself well to address
challenge (C-agile), where, for example, the models under-
pinning the DRA can be easily updated provided that more
operational data becomes available. However, when trying to
achieve the desired dependability (challenge (C-reqs)), the
question is how to show the reliability of such methods,
especially if such needs to be done before the first deployment.
Further, given that much of the perception of an ADS and the
subsequent construction of its situation awareness are reliant
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on ML-based algorithms, the question is also how to connect
the outputs thereof to the risk estimates of the DRA, an
example related to challenge (C-AI). This aspect is especially
prominent for the intention prediction task. The complexity of
the system (formulated in challenge (C-B-func)) can somewhat
be circumvented by using DRA, as the down-stream decision-
making can be done in run-time based on the outputs of the
relatively less complex DRA system. However, how well these
methods are able to accommodate degradations (challenge
(C-B-adapt)) is still an open question. Finally, even though
an accurate risk assessment at the present time is available
through DRA, how to account for the subsequent impact of
the tactical decisions of the ADS (i.e. challenge (C-B-resp))
has not yet been discussed in the literature.

N. Degradation Strategies

A Minimal Risk Condition (MRC) effectively ameliorates
the impact of foreseeable changes of the uncertainties related
to challenges (C-U-env) and (C-U-inter). That is, when it
is possible to assess that the operational context suggests
uncertainties outside those specified in the ODD, for example,
the MRC could be invoked to avoid the associated risks.
However, in some cases, such shifts in the uncertainty might
not be detected early enough as to let the ADS avoid an
accident. Further, finding an appropriate MRC considering the
operational uncertainties could be a non-trivial problem.

The use of degradation strategies does neither ameliorate nor
support challenge (C-B-resp). The self-adaptation capabilities
of the ADS, related to challenge (C-B-adapt), are highly reliant
on appropriate MRCs, and the performance and utility of the
system can significantly be improved through the use of RODs.
The complexity of the ADS, pertaining to challenge (C-B-
func), makes the use of a degradation strategy, such as the
ROD, more difficult due to the large number of parameters to
be considered. The degradation strategies might help mitigate
faults or errors in the system and avoid catastrophic outcomes,
consequently supporting the achievement of high dependabil-
ity requirements, related to challenge (C-reqs). If coupled with
anomaly detection methods for AI/ML-based components,
such as the OoD detection methods, the degradation strategies
might support the safe handling of situations problematic to
AI/ML-based components. In other words, the use of degrada-
tion strategies provides a partial support for solving challenge
(C-AI). As for agile development processes/methodologies,
related to challenge (C-agile), an update to the ODD or any
architectural changes to the ADS would warrant an update of
both the MRCs and the RODs. Such updates would require
significant efforts and analyses before being deployed, which
might inhibit frequent releases of the software, as most of such
analysis could likely not be completely automated and would
therefore be time-consuming.

O. Run-time Certification

Even though run-time certification mitigates the state space
explosion related to challenges (C-U-env), (C-U-inter) and (C-
B-resp), the approach faces the same issues as contract-based
design. Is it possible to create contracts (e.g. ConSerts) that

adequately capture the uncertainties related to challenges (C-
U-env) and (C-U-inter), and the flexibility emanating from
challenge (C-B-resp)? Similarly, the scalability of run-time
certification in the light of challenges (C-B-resp) and (C-
B-func), remains to be shown. However, by formalising the
interfaces between subsystems and components of the ADS,
such methods have the potential to effectively provide a means
to support high cadence releases and continuous learning, i.e.
challenge (C-agile), similar to contract-based design. Lastly,
given appropriate measures and monitors for anomaly and
OoD detection, run-time certification approaches might help
growing the trust in ML-based components (challenge (C-AI)),
as the usage of such components can be adapted given the
fulfilment of their respective demands.

P. Dynamic Safety Management (DSM)

Deferring the assurance of the tactical decisions to run-time
is proposed in order to ameliorate the effects of the operational
uncertainties related to challenges (C-U-env) and (C-U-inter).
The considerable complexity of the required risk assessment
techniques to support DSM seem to be exacerbated by the
ADS’s responsibility for tactical decisions, i.e. challenge (C-
B-resp). However, the impact from the complexity of the ADS
itself (challenge (C-B-func)) could be ameliorated, as argued
for in the DRA section of the main paper, by relying on a
relatively less complex system for DRA/DSM. Degradation
capabilities (related to challenge (C-B-adapt)) would not only
be solved through DSM but could further support a more
elaborate handling of any type of degradation, effectively
providing understanding for the RODs of each degradation of
the system. However, this presumes appropriate self-awareness
capabilities of the system.

By being highly dependent on the DRA methods, the lack
of proof of reliability on the part of the DRA approaches is
also inherited by the DSM, making it difficult to assure the
reliability of the resulting actions of the ADS. Consequently,
it might be difficult to quantify and assure the DSM method
before deployment, at least when comparing to the high
dependability requirements related to challenge (C-reqs). This
would be exacerbated if one is reliant on AI/ML-algorithms for
the implementation of either the DRA or the DSM, in which
case, the validation of such components would impose an
obstacle, i.e. related to challenge (C-AI). However, the DSM
might also provide a means to rely on AI/ML-components
for path planning, as the risk of each generated path could
effectively be assessed through DRA, see e.g. [7].

Assuming that the models underpinning the DRA and
DSM are updated based on collected operational data, they
would promote a learning cycle of the system (corresponding
to challenge (C-agile)). Further, having assured a method
for DSM would also support the frequent changes of other
components in the system (the first aspect of challenge (C-
agile)), as suggested in [8].

Q. Precautionary Safety (PcS)

While the PcS methodology alleviates some of the restric-
tions of a worst-case design-time assumption with respect to
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the operational uncertainties of the ADS (challenges (C-U-
env) and (C-U-inter)), the scalability aspects has not been
exhaustively addressed. Thus, the ability for this method to
overcome challenge (C-B-func) is still an open question. The
approach of [9] suggests that challenges (C-reqs) and (C-AI)
could be overcome, but at the (initial) expense of a reduced
performance of the system. Furthermore, placing the tactical
responsibility with the ADS (challenge (C-B-resp)) might in
turn impact the event exposure rates, which are the central
tenet of the PcS method. Consequently, it remains unclear
how well PcS could work for releases of a specific ADS (ver-
sion) without considerable closed-loop data from that specific
version of the system. How a design methodology based on
precautionary principles can help support agile development
and frequent releases of challenge (C-agile), also remains to
be seen. However, the incorporation of operational data, as
suggested in [9], suggests that this methodology could support
the continuous learning aspect related to challenge (C-agile).
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